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Abstract

In this work we propose a new Hermite least squares

optimization method for problems in electrical

engineering. The aim is to solve bound constrained

non-linear optimization problems, where the derivatives

of the objective function are available with respect

to some optimization variables, while for others they

are not. This method is highly relevant for failure

probability minimization having deterministic and

uncertain optimization variables.

1 Introduction

In mass production often there are uncertainties caused

by manufacturing imperfections, natural material

deviations or environmental influences. These may

result in deviations in the design parameters which may

lead to deviations in operation violating the performance

requirements. To avoid rejections of devices due

to malfunctioning, the design can be optimized to

reach higher reliability in case of uncertainties. Later

we will consider a waveguide as depicted in Fig. 1.

Depending on the type of uncertainties and models, the

derivatives of the objective function with respect to the

optimization variables may be available or not. Using

gradient based optimization methods would require the

computationally expensive approximation of the missing

partial derivatives (e.g. by finite differences), however,

using derivative-free optimization (DFO) methods would

waste available information. We propose a Hermite least

squares optimization method, which is a modification of

Powell’s BOBYQA (Bound constrained Optimization BY

Quadratic Approximation) method [1], and is well suited

for this case of mixed gradient information.

2 Failure probability

We introduce two types of design parameters: uncertain

Gaussian distributed parameters ξ ∼ N (ξ,Σ), with ξ ∈
Rnξ , Σ ∈ Rnξ×nξ , and probability density function ϕ(ξ),
and deterministic parameters d ∈ Rnd . Let Q : Rnξ+nd →
R denote a quantity of interest (QoI) and c ∈ R. Then,

we can denote the performance feature specification for

a device by

Q(ξ,d) ≤ c. (1)
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Figure 1: CST model of a waveguide with two uncertain

geometry parameters ξ1 and ξ2.

We define the failure domain as the set of all parameter

combinations of ξ such that (1) is violated, i.e.,

Fd := {ξ : Q(ξ,d) > c} . (2)

Then, the failure probability is defined by

Pf(ξ,d) ≡ P[ξ ∈ Fd] = E[1Fd
(ξ)]

=

∫
Rnξ

1Fd
(ξ)ϕ(ξ)dξ, (3)

where 1Fd
(ξ) denotes the indicator function with value

1 if ξ lies in Fd and value 0 otherwise. Eq. (3)

can be calculated with a Monte Carlo (MC) analysis

which requires many evaluations of the QoI, typically

involving computationally expensive simulations. Even

with efficient modifications of MC, see e.g. [2], each

evaluation of (3) remains time consuming. Hence, the

main goal of the optimization method we will propose is

to reduce the number of objective function calls compared

to classic gradient based or DFO solvers.

3 The optimization problem

We aim to minimize the failure probability under bound

constraints. The optimization problem reads

min
ξ,d

Pf(ξ,d) s.t. ξlb ≤ ξ ≤ ξub ∧ dlb ≤ d ≤ dub. (4)

The gradient of Pf(ξ,d) with respect to ξ can be easily

calculated since the probability density function ϕ(ξ)
of the Gaussian distribution is an exponential function.

Using MC based estimation methods, this gradient can

be obtainedwithout additional computing effort [3]. On the

other hand, the gradient with respect to the deterministic

parameter requires the differentiation of the indicator

function. Hence, we consider this gradient as not

available.



4 Hermite least squares optimization

Powell’s BOBYQA method is a DFO technique, which

uses (underdetermined) interpolation to build a quadratic

model of the objective function in each iteration. Then,

the quadratic subproblem is solved in a trust region.

The subproblem’s solution is added to the interpolation

set, while another point is deleted, ensuring that the

interpolation set remains well balanced. Based on the

Python implementation PyBOBYQA by Cartis et al. [4],

we modify this algorithm in order to handle derivative

information. By x = [ξ,d] ∈ Rnξ+nd = Rnx we denote

the optimization variable. Let

T = {(x1,Pf(x
1)), . . . , (xp,Pf(x

p))} (5)

denote a training data set and Φ = {φ1(x), . . . , φq(x)} the
monomial basis of second degree. We build a system of

linear equations

Mv = b, (6)

with Mij = φj(x
i) and bi = Pf(x

i). We include derivative

information with respect to ξ into the training data set, i.e.,

TH =

{(
x1,Pf(x

1),
∂

∂x1
Pf(x

1), . . . ,
∂

∂xnξ

Pf(x
1)

)
, . . . ,

(
xp,Pf(x

p),
∂

∂x1
Pf(x

p), . . . ,
∂

∂xnξ

Pf(x
p)

)}
. (7)

We build the Hermite system of equations

MHvH = bH, (8)

where

MH =


M

M(1)

...

M(nξ)

 and bH =


b

b(1)

...

b(nξ)

 (9)

with M
(k)
ij = ∂

∂xk
φj(x

i) and b
(k)
i = ∂

∂xk
Pf(x

i). The system

(8) is overdetermined for q < p(nξ+1) and can be solved
with least squares regression. We obtain a quadratic

subproblem, which is solved in a trust region, analogously

to the PyBOBYQA method, update the training data set

and proceed with the next iteration. For details see [5].

5 Numerical results

We design a simple dielectrical waveguide with two

uncertain geometry parameters and two deterministic

material parameters. The initial failure probability is 0.57.
We compare PyBOBYQA and Hermite least squares in

their default settings. The results are provided in Table 1.

The computational effort, measured by the number of

objective function calls, is 27% lower when using the

proposed Hermite least squares method.

Method Popt
f

# fct. calls

PyBOBYQA 0.02 73
Hermite l.s. 0.0036 53

Table 1: Optimization results for waveguide.

Further, we benchmarked the method on a test set of

29 non-linear optimization problems, assuming different

numbers and combinations of derivative directions being

available. The average computing effort for the

five-dimensional problems is summarized in Fig. 2. We

observe a significant decrease of effort by 35− 52%.
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Figure 2: Computing effort considering different numbers

of derivative directions as available.

6 Conclusion

We proposed the Hermite least squares method well

suited to handle optimization problems with mixed

gradient information. This method is highly relevant

for failure probability optimization with deterministic and

Gaussian distributed uncertain optimization variables.

We showed numerically that the computing effort can be

reduced by up to 52% compared to the state of the art

derivative-free PyBOBYQAmethod.
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